Restricted feasible region

Related problems

Feasible regions meets pattern avoidance The long awaited 3rd of feasible regions SFSU Algebra Geometry and Combinatorics Seminar

Raúl Penaguião

San Francisco State University

17th February, 2021

Joint work with Jacopo Borga

Slides can be found in

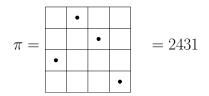
http://user.math.uzh.ch/penaguiao/

Restricted feasible region

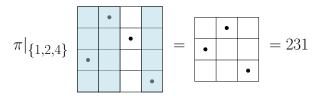
Related problems

Patterns in permutations

A permutation π of size n is an arrangement on an $n \times n$ table:



Select a set *I* of columns of the square configuration of π and define the **restriction** $\pi|_I$. This is a permutation.



Restricted feasible region

Related problems

Number of occurrences

We can count occurrences of each of the k! permutations of size k in a big permutation σ .

For permutations π , σ , we define the pattern number:

$$occ(\pi, \sigma) = #{occurrences of \pi in \sigma}.$$

In this way we have

occ(12, 4132) = 2, occ(312, 4132) = 2, occ(12, 12345) = 10and occ(312, 3675421) = 0

$$\widetilde{\operatorname{occ}}(\pi,\sigma) = \frac{\operatorname{occ}(\pi,\sigma)}{\binom{|\sigma|}{|\pi|}}, \ \widetilde{\operatorname{occ}}_k(\sigma) = (\widetilde{\operatorname{occ}}(\pi,\sigma))_{\pi\in\mathcal{S}_k} \in \mathbb{R}^{\mathcal{S}_k}.$$

Restricted feasible region

Related problems

Plotting these relationships

For a fixed integer k, what are the possible values of $(\widetilde{occ}(\pi, \sigma))_{\pi \in S_k}$ when $|\sigma|$ is big?

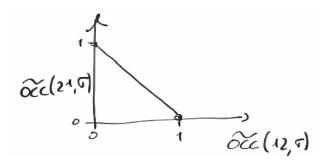


Figure: The interplay between proportion of occurrences of 12 and 21.

Consecutive occurrences

Restricted feasible region

Related problems

Introduction and classical patterns

Consecutive occurrences

Restricted feasible region

Related problems

Restricted feasible region

Related problems

Feasible region - Classical patterns

For a fixed integer k, the corresponding feasible region (FReg) is defined as follows

$$F_k \coloneqq \{ \vec{v} \in \mathbb{R}^{\mathcal{S}_k} | \exists \sigma^{(n)}, \widetilde{\operatorname{occ}}_k(\sigma^{(n)}) \to \vec{v}, |\sigma^{(n)}| \to \infty \} \,.$$

 $F_{\leq k}$ - the FReg indexed by all permutations of size at most k F_{S} - the FReg indexed by a set of permutations S.

 $F_{\{\pi\}}$ - an interval and is often studied in the context of *packing problems*.

Consecutive occurrences

Restricted feasible region

Related problems

Feasible region - Examples

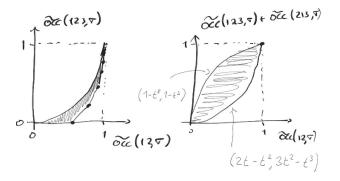


Figure: Left: The FReg comparing 12 and 123. Right: The FReg comparing patterns of 12 and patterns of 123 or 213 becomes a scalloped triangle. Feasible regions due to Kenyon, Kral, et.al. 2015.

Restricted feasible region

Related problems

Feasible region - The dimension problem

Theorem (Glebov, Hoppen, et.al. 2017)

The dimension of the feasible region $F_{\leq k}$ is at least the number of indecomposable permutations of size *k*.

Theorem (Vargas, 2014)

The feasible region $F_{\leq k}$ satisfies a set of algebraic equations indexed by the **Lyndon permutations** of size up to k.

Conjecture

The codimension of the feasible region $F_{\leq k}$ is precisely the number of **Lyndon permutations** of size up to *k*.

Restricted feasible region

Related problems

Consecutive occurrences

We now consider only occurrences that form **an interval**. For instance, taking $\sigma = 2413$, there are two distinct consecutive restrictions of σ of size three, namely 231 and 312.

$$\operatorname{c-occ}(\pi, \tau) = \#\{I \text{ interval s.t. } \tau|_I = \pi\}.$$

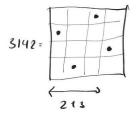


Figure: The permutation 3142, does not contain a consecutive occurrence of 231, but it does contain a consecutive occurrence of 213.

Restricted feasible region

Related problems

٠

Consecutive occurrences

The number $\operatorname{c-occ}(\pi,\sigma)$ varies between 0 and $|\sigma|-|\pi|+1.$ So we define

$$\widetilde{\operatorname{c-occ}}(\pi,\sigma) = \frac{\operatorname{c-occ}(\pi,\sigma)}{|\sigma|}, \ \widetilde{\operatorname{c-occ}}_k(\sigma) = (\widetilde{\operatorname{c-occ}}(\pi,\sigma))_{\pi \in \mathcal{S}_k} \in \mathbb{R}^{\mathcal{S}_k}$$

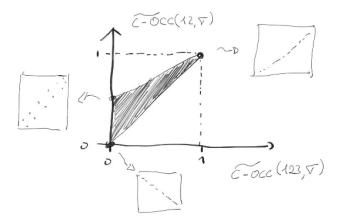
Restricted feasible region

Related problems

New feasible region

$$\mathcal{F}_k \coloneqq \{ \vec{v} \in \mathbb{R}^{\mathcal{S}_k} | \exists \sigma^{(n)}, \widetilde{\text{c-occ}}_k(\sigma^{(n)}) \to \vec{v}, |\sigma^n(n)| \to \infty \} \subseteq \mathbb{R}^{\mathcal{S}_k}$$

This is a closed and convex region.



Restricted feasible region

Related problems

The overlap graph

Consider the case k = 3 and the permutation $\sigma = 2714365$.

 $2714365 \mapsto 231 - 312 - 132 - 213 - 132$.

We can construct a graph from this:

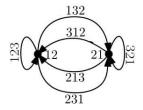


Figure: The overlap graph for k = 3

Consecutive occurrences

Restricted feasible region

Related problems

Another overlap graph

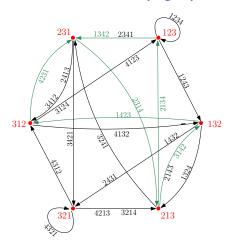


Figure: The overlap graph for k = 4, together with the path corresponding to $\sigma = 628451793$.

Consecutive occurrences

Restricted feasible region

Related problems

The cycle polytope

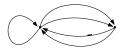


Figure: A graph with five cycles.

The cycle polytope is defined in $\mathbb{R}^{E(G)}$.

$$(\vec{e}_{\mathcal{C}})_x = \frac{1}{|\mathcal{C}|} \mathbb{1}[x \in \mathcal{C}].$$

 $\operatorname{conv}\{\vec{e}_{\mathcal{C}}|\mathcal{C} \text{ is a simple cycle in } G\} \subseteq \mathbb{R}^{E(G)}.$

Consecutive occurrences

Restricted feasible region

Related problems

The cycle polytope

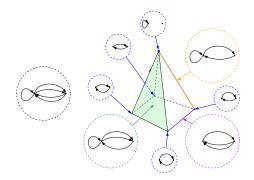


Figure: The overlap graph of a graph with five cycles.

Restricted feasible region

Related problems

The overlap graph - inverting a path

{ permutations } \rightarrow { paths in Ov(k) }, is this map invertible?

 $\omega = 2413 \rightarrow 4123 \rightarrow 1342 \rightarrow 2413 \,.$

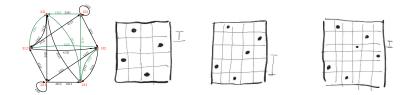


Figure: The construction of the path ω .

Consecutive occurrences

Restricted feasible region

Related problems

It is a cycle polytope

Theorem (Borga, P., 2019)

 $P(\mathcal{O}v(k)) = \mathcal{F}_k.$

In particular, \mathcal{F} is a polytope with dimension k! - (k-1)!.

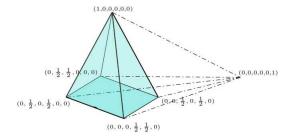


Figure: The feasible region of k = 3.

Restricted feasible region

Related problems

Avoiding set patterns - permutation classes

Let's introduce pattern avoidance in this problem!

$$\operatorname{Av}(\mathcal{P}) = \left\{ \tau \in \mathcal{S} \, | \, \forall \, \pi \in \mathcal{P}, \, \operatorname{occ}(\pi, \tau) = 0 \right\},\,$$

Let $\operatorname{Av}_k(\mathcal{P})$ be $\operatorname{Av}(\mathcal{P}) \cap \mathcal{S}_k$.

$$Av(12) = \{1, 21\}, \# Av_k(132) = C_k.$$

A set of the form $\operatorname{Av}(\mathcal{P}) \subseteq \mathcal{S}$ is called a **permutation class**. Permutations classes are a world to be investigated!

Consecutive occurrences

Restricted feasible region

Related problems

Generating trees

in Av (4321)

Figure: Left: the permutation class Av(132) is characterized by in inductive construction. Right: the permutation classes $Av(n \cdots 1)$ are characterized by n - 1 increasing monochromatic subsequences.

Restricted feasible region

Related problems

Does anyone read these titles?

The feasible region is:

$$\mathcal{F}_k^{\operatorname{Av}(\mathcal{P})} \coloneqq \{ \vec{v} \in \mathbb{R}^{\mathcal{S}_k} \, | \, \exists \, \sigma^{(n)} \in \operatorname{Av}(\mathcal{P}) \text{ with } \widetilde{\operatorname{c-occ}}_k(\sigma^{(n)}) \to \vec{v} \} \,.$$

 $\mathcal{F}_k^{\operatorname{Av}(\mathcal{P})}$ is still a closed set. Is it convex? Example: if $\mathcal{P} = \{132, 312, 231, 213\}$, then $\mathcal{F}_k^{\operatorname{Av}(\mathcal{P})}$ is a set with only two points.

Proposition If \mathcal{P} is a singleton, then $\mathcal{F}_k^{\operatorname{Av}(\mathcal{P})}$ is convex.

 $\{ \text{ permutations in } \operatorname{Av}(\mathcal{P}) \} \rightarrow \{ \text{ paths in } \mathcal{O}v(k) \text{ avoiding } \mathcal{P} \}$

Thus,
$$\mathcal{F}_k^{\operatorname{Av}(\mathcal{P})} \subseteq P(\mathcal{O}v(k)|_{\operatorname{Av}(\mathcal{P})}).$$

Restricted feasible region

Related problems

Example of path inversion - 132

On the case $\mathcal{P} = \{132\}$, can we always invert such paths? Example:

 $\omega = 123 \rightarrow 231 \rightarrow 321 \rightarrow 213.$

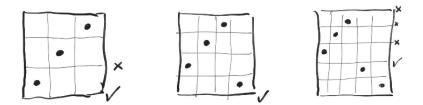


Figure: The construction of a permutation corresponding to the path ω .

Consecutive occurrences

Restricted feasible region

Related problems

The upshot - 132

$$\mathcal{F}_k^{Av(132)} = P(\mathcal{O}v(k)|_{Av_k(132)}) \text{ and } \dim \mathcal{F}_k^{Av(132)} = C_k - C_{k-1}$$

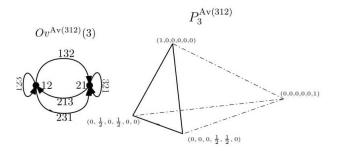


Figure: Left: The restricted overlap graph for $\mathcal{P} = \{312\}$. Right: The restricted feasible region for k = 3 and $\mathcal{P} = \{312\}$.

Restricted feasible region

Related problems

The overlap graph - 321

On the case 321, can we always invert such paths? Example:

$$\omega = 312 \rightarrow 123 \rightarrow 231.$$

Recall: 321 avoiders have a monotone bicoloring. Let's add colours to the path, in such a way that each color is a monotone sequence:

$$\omega = 312 \rightarrow 123 \rightarrow 231.$$

Incolorable!

Restricted feasible region

Related problems

The coloured overlap graph - 321

On the other hand, a valid path of colored permutations would be, for instance

$$\omega = 312
ightarrow 123
ightarrow 123
ightarrow 132$$
 .

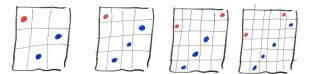


Figure: The construction of a permutation corresponding to the corrected path ω .

Restricted feasible region

Related problems

The coloured overlap graph - 321 Let's add colours to the overlap graph itself and call it $\mathfrak{COv}^{\mathcal{Av}(321)}(k)$

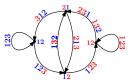


Figure: The overlap graph for k = 3 adapted to $\mathcal{P} = \{321\}$, where now we include all possible colouring of each edge.

Theorem (Borga, P. 2020)

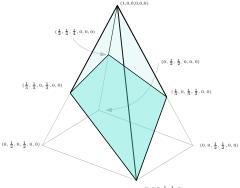
$$\mathcal{F}_{k}^{\operatorname{Av}(n\cdots 1)} = \Pi(P(\mathfrak{COv}^{\mathcal{Av}(n\cdots 1)}(k))),$$

$$\dim \mathcal{F}_k^{\operatorname{Av}(n\cdots 1)} = |\operatorname{Av}_k(n\cdots 1)| - |\operatorname{Av}_{k-1}(n\cdots 1)|.$$

Restricted feasible region

Related problems

The restricted feasible region - 321



 $(0, 0, 0, \frac{1}{2}, \frac{1}{2}, 0)$

Figure: Left: $P(\mathcal{O}v(3))$. Right: The restricted feasible region for k = 3 and $\mathcal{P} = \{321\}$, overlaid with $P(\mathcal{O}v(3)|_{Av_3(321)})$.

Consecutive occurrences

Restricted feasible region

Related problems

Related problems

- Other permutation classes are also given by generating trees. We believe that any such permutation class will have a direct description of the feasible region, and that we can totally describe all the extremal points.
- The dimension conjecture: if \mathcal{P} has only one pattern, then

$$\dim \mathcal{F}_{k}^{\operatorname{Av}_{k}(\mathcal{P})} = |\operatorname{Av}_{k}(\mathcal{P})| - |\operatorname{Av}_{k-1}(\mathcal{P})|.$$

- The other dimension conjecture on the classical FReg.
- What is the volume of all these regions?

Consecutive occurrences

Restricted feasible region

Related problems

The end

